由于該體系使用了緩沖能力強的DMF,可使鍍液的pH穩定,從而使鍍層厚度的增加成為可能。沉積速率快,鍍層光亮,耐蝕性好,使用DMF溶液體系時溶液的導電性差,需要較高的槽電壓,電耗較高,但鄭姝皓、龔竹青等人使用DMF溶液沉積得到了納米晶Ni-Fe-Cr合金,并成功用于核電站冷凝管上。
1. DMF-H2O體系鍍液組成和操作條件
鍍液組成和操作條件如下:
氯化鉻(CrCl3·6H2O) 0.8mol/L(213g/L) 、DMF(二甲基甲酰胺) 500mol/L 、水(H2O) 500mol/L
氯化鎳(NiCl2·6H2O) 0.2mol/L(48g/L) 、 穩定劑 0.05mol/L 、 光亮劑 1~2g/L
氯化亞鐵(FeCl2·7H2O) 0.03mol/L(7.6g/L) 、硼酸(H3BO3)0.15mol/L (10g/L)
氯化銨(NH4CI) 0.5mol/L(27g/L) 、電流密度 5~30A/d㎡ 、溫度 20~30℃ 、pH 小于2
采用的脈沖參數:周期為300ms、75ms、50ms、25ms、10ms、5ms、2ms、1ms;
占空比tot/tom=0(直流)、0.2、0.25、0.3、0.4、0.5、0.6、0.7、0.8。
2. 鍍液及鍍層特性
a. Ni-Fe-Cr合金層表面的SEM圖像
由圖11-13可見,脈沖和直流電沉積所獲得的合金鍍層的晶粒都在納米范圍內,但脈沖電沉積的晶粒(b)小于直流電沉積的晶粒(a)。
b. 合金晶粒尺寸與外觀
直流和脈沖條件下合金層晶粒尺寸與外觀的比較(SEM)見表11-6.
由表11-6可見,脈沖電沉積條件下得到的合金晶粒尺寸和鍍層外觀均優于直流電沉積,直流電沉積鍍層的晶粒隨電鍍時間的延長而明顯增大,而脈沖電沉積晶粒長大的速率則不明顯。
c. 直流和脈沖電沉積Ni-Fe-Cr合金極化曲線
直流和脈沖電沉積Ni-Fe-Cr合金極化曲線見圖11-14。
由圖11-14可見,脈沖電沉積曲線的斜率高于電流電沉積曲線的斜率,故脈沖電沉積可獲得比直流電沉積更為細致的結晶。
4. 直流和脈沖電沉積Ni-Fe-Cr合金的時間和沉積速率的關系
直流和脈沖電沉積Ni-Fe-Cr合金的時間和沉積速率的關系見圖11-15。由圖11-15可見,脈沖電沉積的沉積速率高于直流電沉積。
6. 直流和脈沖電沉積Ni-Fe-Cr合金的時間和陰極電流效率的關系。
直流和脈沖電沉積 Ni-Fe-Cr合金的時間和陰極電流效率的關系見11-16。由圖11-16可見,脈沖電沉積的陰極電流效率高于直流電沉積。在采用脈沖電沉積時,選擇適宜的脈沖參數是非常重要的。